

MATH 147 Review: Line Integrals

Facts to Know

If f is a real-valued function defined on a smooth curve $C \subseteq \mathbb{R}^2$, then

$$\int_C f(x, y) dx =$$

$$\int_C f(x, y) dy =$$

Examples

1. Evaluate $\int_C (2 + x^2 y) dy$, where C is the upper half of the unit circle $x^2 + y^2 = 1$ with a clockwise orientation.

2. Evaluate $\int_C 2x \, dx$, where C consists of the arc C_1 of the line segment from $(0, 0)$ to $(1, 1)$ followed by the vertical line segment C_2 from $(1, 1)$ to $(1, 2)$.